
EDA Simulator Link™ 3
Getting Started Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

EDA Simulator Link™ Getting Started Guide

© COPYRIGHT 2003–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
August 2003 Online only New for Version 1 (Release 13SP1)
February 2004 Online only Updated for Version 1.1 (Release 13SP1)
June 2004 Online only Updated for Version 1.1.1 (Release 14)
October 2004 Online only Updated for Version 1.2 (Release 14SP1)
December 2004 Online only Updated for Version 1.3 (Release 14SP1+)
March 2005 Online only Updated for Version 1.3.1 (Release 14SP2)
September 2005 Online only Updated for Version 1.4 (Release 14SP3)
March 2006 Online only Updated for Version 2.0 (Release 2006a)
September 2006 Online only Updated for Version 2.1 (Release 2006b)
March 2007 Online only Updated for Version 2.2 (Release 2007a)
September 2007 Online only Updated for Version 2.3 (Release 2007b)
March 2008 Online only Updated for Version 2.4 (Release 2008a)
October 2008 Online only Updated for Version 2.5 (Release 2008b)
March 2009 Online only Updated for Version 2.6 (Release 2009a)
September 2009 Online only Updated for Version 3.0 (Release 2009b)
March 2010 Online only Updated for Version 3.1 (Release 2010a)

Contents

Introduction

1
Product Overview . 1-2
Product Description . 1-2

Using EDA Simulator Link with HDL Simulators 1-3
Overview to Cosimulation with MATLAB or Simulink and
the HDL Simulator . 1-3

Starting the HDL Simulator from MATLAB 1-9
Starting the HDL Simulator from a Shell 1-13
Using the EDA Simulator Link Libraries for HDL
Cosimulation . 1-16

Using EDA Simulator Link with Virtual Platforms 1-24
Typical Users and Applications . 1-24
Generating TLM Components for Use with Virtual Platform
Development . 1-24

Using EDA Simulator Link with FPGA Development
Environment . 1-26
Simulation with Simulink and the FPGA Development
Environment . 1-26

Generated FPGA Project Cosimulation Workflows
Described in the User Guide . 1-27

Installing the EDA Simulator Link Software

2
Product Requirements . 2-2
What You Need to Know . 2-2
Required Products . 2-3

v

Installation . 2-6
Installing the Link Software . 2-6
Installing Related Application Software 2-6

Learning More About the EDA Simulator Link
Software

3
Documentation Overview . 3-2
Documentation for HDL Cosimulation 3-2
Documentation for Generating TLM Components 3-3
Documentation for Generated FPGA Implementations . . . 3-4
Documentation for Use with All EDA Simulator Link
Adaptors . 3-5

Online Help . 3-6
Online Help in the MATLAB Help Browser 3-6
Help for EDA Simulator Link MATLAB Functions 3-6
Block Reference Pages . 3-6

Demos and Tutorials . 3-7
Demos . 3-7
Tutorials . 3-7

Index

vi Contents

1

Introduction

• “Product Overview” on page 1-2

• “Using EDA Simulator Link with HDL Simulators ” on page 1-3

• “Using EDA Simulator Link with Virtual Platforms” on page 1-24

• “Using EDA Simulator Link with FPGA Development Environment” on
page 1-26

1 Introduction

Product Overview

Product Description
EDA Simulator Link™ integrates MATLAB® and Simulink® with hardware
design flows. It supports verification of FPGA and ASIC hardware designs
by providing a cosimulation interface to HDL simulators, virtual platform
development by generating a SystemC® Transaction Level Model (TLM 2.0)
component and standalone test bench and FPGA deployment of automatically
generated HDL by creating and managing Xilinx® ISE projects.

HDL Cosimulation
EDA Simulator Link is a cosimulation interface that provides a bidirectional
link between MATLAB and Simulink and HDL simulators from Mentor
Graphics®, Cadence®, and Synopsys®, enabling verification of VHDL®,
Verilog®, and mixed-language implementations.

EDA Simulator Link lets you use MATLAB code or Simulink models as a
test bench that generates stimulus for an HDL simulation and analyzes the
simulation’s response. It also lets you replace multiple HDL components
with MATLAB code or Simulink models, enabling simulation of the complete
system before all the HDL design elements are available.

EDA Simulator Link enables interactive and batch-mode cosimulation on a
single computer, across heterogeneous platforms, or across a network.

TLM Generation
EDA Simulator Link lets you create a SystemC Transaction Level Model
(TLM) that can be executed in any OSCI-compatible TLM 2.0 environment,
including a commercial virtual platform.

FPGA Development
EDA Simulator Link works with Simulink, Simulink® HDL Coder™, and the
supported FPGA development environment to prepare your automatically
generated HDL Code for implementation in an FPGA. EDA Simulator Link
creates and manages your Xilinx ISE project and integrates a clock module
with your design in an automatically generated top level module.

1-2

Using EDA Simulator Link with HDL Simulators

Using EDA Simulator Link with HDL Simulators

In this section...

“Overview to Cosimulation with MATLAB or Simulink and the HDL
Simulator” on page 1-3

“Starting the HDL Simulator from MATLAB” on page 1-9

“Starting the HDL Simulator from a Shell” on page 1-13

“Using the EDA Simulator Link Libraries for HDL Cosimulation” on page
1-16

Overview to Cosimulation with MATLAB or Simulink
and the HDL Simulator
The EDA Simulator Link software consists of MATLAB functions that
establish communication links between the HDL simulator and MATLAB
and a library of Simulink blocks that you may use to include HDL simulator
designs in Simulink models for cosimulation.

EDA Simulator Link software streamlines FPGA and ASIC development by
integrating tools available for these processes:

1 Developing specifications for hardware design reference models

2 Implementing a hardware design in HDL based on a reference model

3 Verifying the design against the reference design

The following figure shows how the HDL simulator and MathWorks™
products fit into this hardware design scenario.

1-3

1 Introduction

���������	
����

�

�

���	���������

������	
����

���	���������	����
��������

�
�������	�������������

�� ��!
�����	"��������	 ���#�$

%�����	�����	 ���#�$
&�������������	 ���#�$

��������

�����	"��������		!�������
��������	%�$�
	"����

&�������������	!�������

As the figure shows, EDA Simulator Link software connects tools that
traditionally have been used discretely to perform specific steps in the design
process. By connecting these tools, the link simplifies verification by allowing
you to cosimulate the implementation and original specification directly. This
cosimulation results in significant time savings and the elimination of errors
inherent to manual comparison and inspection.

In addition to the preceding design scenario, EDA Simulator Link software
enables you to work with tools in the following ways:

• Use MATLAB or Simulink to create test signals and software test benches
for HDL code

• Use MATLAB or Simulink to provide a behavioral model for an HDL
simulation

• Use MATLAB analysis and visualization capabilities for real-time insight
into an HDL implementation

• Use Simulink to translate legacy HDL descriptions into system-level views

Note You can cosimulate a module using SystemVerilog, SystemC or both
with MATLAB or Simulink using the EDA Simulator Link software. Write
simple wrappers around the SystemC and make sure that the SystemVerilog
cosimulation connections are to ports or signals of data types supported by the
link cosimulation interface.

1-4

Using EDA Simulator Link with HDL Simulators

Linking with MATLAB and the HDL Simulator
When linked with MATLAB, the HDL simulator functions as the client, as
the following figure shows.

�� ��!
������

���
���������
&�����

����

'��

'��

��

��

(�)����

(�������

In this scenario, a MATLAB server function waits for service requests that
it receives from an HDL simulator session. After receiving a request, the
server establishes a communication link and invokes a specified MATLAB
function that computes data for, verifies, or visualizes the HDL module (coded
in VHDL or Verilog) that is under simulation in the HDL simulator.

After the server is running, you can start and configure the HDL simulator or
use with MATLAB with the supplied EDA Simulator Link function:

• nclaunch (Incisive)

• vsim (ModelSim)

• launchDiscovery (Discovery)

For more information, see “Starting the HDL simulator etc.”

The following figure shows how a MATLAB test bench function wraps around
and communicates with the HDL simulator during a test bench simulation
session.

1-5

1 Introduction

The following figure shows how a MATLAB component function is wrapped
around by and communicates with the HDL simulator during a component
simulation session.

When you begin a specific test bench or component session, you specify
parameters that identify the following information:

• The mode and, if appropriate, TCP/IP data necessary for connecting to a
MATLAB server

• The MATLAB function that is associated with and executes on behalf of
the HDL instance

• Timing specifications and other control data that specifies when the
module’s MATLAB function is to be called

Linking with Simulink and the HDL Simulator
When linked with Simulink, the HDL simulator functions as the server, as
shown in the following figure.

1-6

Using EDA Simulator Link with HDL Simulators

��������
&��������	���������

������
'��

'����

��

����
(�)����

(�������

In this case, the HDL simulator responds to simulation requests it receives
from cosimulation blocks in a Simulink model. You begin a cosimulation
session from Simulink. After a session is started, you can use Simulink and
the HDL simulator to monitor simulation progress and results. For example,
you might add signals to an HDL simulator Wave window to monitor
simulation timing diagrams.

Using the Block Parameters dialog box for an HDL Cosimulation block, you
can configure the following:

• Block input and output ports that correspond to signals (including internal
signals) of an HDL module. You can specify sample times and fixed-point
data types for individual block output ports if desired.

• Type of communication and communication settings used for exchanging
data between the simulation tools.

• Rising-edge or falling-edge clocks to apply to your module. You can
individually specify the period of each clock. (Incisive and ModelSim only.
See the reference page for launchDiscovery for instructions on creating
clocks for use with Discovery using Tcl commands).

• Tcl commands to run before and after the simulation. (Incisive and
ModelSim only. See the reference page for launchDiscovery for
instructions on how to issue Tcl commands for use with Discovery)

EDA Simulator Link software equips the HDL simulator with a set of
customized functions. For ModelSim, when you use the function vsimulink,
you execute the HDL simulator with an instance of an HDL module for
cosimulation with Simulink. After the module is loaded, you can start the
cosimulation session from Simulink. Incisive users can perform the same
operations with the function hdlsimulink. Discovery users can perform
similar operations with the launchDiscovery command.

1-7

1 Introduction

EDA Simulator Link software also includes a block for generating value
change dump (VCD) files. You can use VCD files generated with this block to
perform the following tasks:

• View Simulink simulation waveforms in your HDL simulation environment

• Compare results of multiple simulation runs, using the same or different
simulation environments

• Use as input to post-simulation analysis tools

Communications for HDL Cosimulation
The mode of communication that you use for a link between the HDL
simulator and MATLAB or Simulink depends on whether your application
runs in a local, single-system configuration or in a network configuration.
If these products and The MathWorks™ products can run locally on the
same system and your application requires only one communication channel,
you have the option of choosing between shared memory and TCP/IP
socket communication. Shared memory communication provides optimal
performance and is the default mode of communication.

TCP/IP socket mode is more versatile. You can use it for single-system
and network configurations. This option offers the greatest scalability.
For more on TCP/IP socket communication, see “Specifying TCP/IP Socket
Communication”.

Hardware Description Language (HDL) Support
All EDA Simulator Link MATLAB functions and the HDL Cosimulation block
offer the same language-transparent feature set for both Verilog and VHDL
models.

EDA Simulator Link software also supports mixed-language HDL models
(models with both Verilog and VHDL components), allowing you to cosimulate
VHDL and Verilog signals simultaneously. Both MATLAB and Simulink
software can access components in different languages at any level.

HDL Cosimulation Workflows Described in the User Guide
The EDA Simulator Link User Guide provides instruction for using the link
software with supported HDL simulators for the following workflows:

1-8

Using EDA Simulator Link with HDL Simulators

• Simulating an HDL Component in a MATLAB Test Bench Environment

• Replacing an HDL Component with a MATLAB Component Function

• Simulating an HDL Component in a Simulink Test Bench Environment

• Replacing an HDL Component with a Simulink Algorithm

• Recording Simulink Signal State Transitions for Post-Processing

See “Learning More About the EDA Simulator Link Software” for more
information about the EDA Simulator Link documentation.

Starting the HDL Simulator from MATLAB
For each supported HDL simulator, EDA Simulator Link has a unique
command to launch the HDL simulator from within MATLAB. Each command
contains a set of customized property value pairs for specifying the EDA
Simulator Link library to use, the design to load, the type of communication
connection, and so on.

The HDL simulator launch commands are as follows:,

HDL Simulator EDA Simulator Link Launch Command

Cadence Incisive nclaunch

Mentor Graphics
ModelSim

vsim

Synopsys
Discovery

launchDiscovery

You issue the launch command directly from MATLAB and provide the EDA
Simulator Link library information and other required parameters (see
“Using the EDA Simulator Link Libraries for HDL Cosimulation” on page
1-16). No special setup is required. This function starts and configures the
HDL simulator for use with the EDA Simulator Link software. By default,
the function starts the first version of the simulator executable that it finds
on the system path (defined by the path variable), using a temporary file that
is overwritten each time the HDL simulator starts.

1-9

1 Introduction

You can customize the startup file and communication mode to be used
between MATLAB or Simulink and the HDL simulator by specifying the call
to the appropriate launch command with property name/property value pairs.
Refer to the nclaunch, vsim, or launchDiscovery reference documentation
for specific information regarding the property name/property value pairs.

If you want to start a different version of the simulator executable than the
first one found on the system path, use the setenv and getenv MATLAB
functions to set and get the environment of any sub-shells spawned by
UNIX(), DOS(), or system().

When you specify a communication mode using any of the EDA Simulator
Link HDL simulator launch commands, the function applies the specified
communication mode to all MATLAB or Simulink/HDL simulator sessions.

See “Starting the ModelSim Simulator from MATLAB” on page 1-10, “Starting
the Cadence Incisive Simulator from MATLAB” on page 1-12, and “Starting
the Discovery Simulator from MATLAB” on page 1-13 for examples of using
each of the EDA Simulator Link HDL simulator launch commands with
various property/name value pairs and other parameters.

Diagnostic and Customization Setup Script for use with Incisive and
ModelSim If you would like some assistance in setting up your environment
for use with EDA Simulator Link, you can diagnose your setup (correct
omissions and errors) and also customize your setup for future invocations of
nclaunch or vsim by following the process in “Diagnosing and Customizing
Your Setup for Use with the HDL Simulator and EDA Simulator Link
Software”.

Starting the ModelSim Simulator from MATLAB
To start the HDL simulator from MATLAB, enter vsim at the MATLAB
command prompt:

>> vsim('PropertyName', 'PropertyValue'...)

The following example changes the folder location to VHDLproj and then
calls the function vsim. Because the command line omits the 'vsimdir'
and 'startupfile' properties, vsim creates a temporary DO file. The

1-10

Using EDA Simulator Link with HDL Simulators

'tclstart' property specifies Tcl commands that load and initialize the HDL
simulator for test bench instance modsimrand.

cd VHDLproj

vsim('tclstart',...

'vsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

The following example changes the folder location to VHDLproj and then
calls the function vsim. Because the function call omits the 'vsimdir'
and 'startupfile' properties, vsim creates a temporary DO file. The
'tclstart' property specifies a Tcl command that loads the VHDL entity
parse in library work for cosimulation between vsim and Simulink. The
'socketsimulink' property specifies TCP/IP socket communication on the
same computer, using socket port 4449.

cd VHDLproj

vsim('tclstart', 'vsimulink work.parse', 'socketsimulink', '4449')

The following example has the HDL compilation and simulation commands
run automatically when you start the ModelSim software from MATLAB.

vsim('tclstart',

{'vlib work', 'vlog +acc clocked_inverter.v hdl_top.v', 'vsim +acc hdl_top' });

This next example loads the HDL simulation just as in the previous example
but it also loads in the Link to Simulink library, uses socket number 5678
to communicate with cosimulation blocks in Simulink models, and uses an
HDL time precision of 10 ps.

vsim('tclstart',

{'vlib work', 'vlog -novopt clocked_inverter.v hdl_top.v',

'vsimulink hdl_top -socket 5678 -t 10ps'});

Or

vsim('tclstart',

{'vlib work', 'vlog -novopt clocked_inverter.v hdl_top.v',

'vsimulink hdl_top -t 10ps'},

'socketsimulink', 5678);

1-11

1 Introduction

Starting the Cadence Incisive Simulator from MATLAB
To start the HDL simulator from MATLAB, enter nclaunch at the MATLAB
command prompt:

>> nclaunch('PropertyName', 'PropertyValue'...)

The following example changes the folder location to VHDLproj and then calls
the function nclaunch. Because the command line omits the 'hdlsimdir'
and 'startupfile' properties, nclaunch creates a temporary file. The
'tclstart' property specifies Tcl commands that load and initialize the HDL
simulator for test bench instance modsimrand.

cd VHDLproj

nclaunch('tclstart',...

'hdlsimmatlab modsimrand; matlabtb modsimrand 10 ns -socket 4449')

The following example changes the folder location to VHDLproj and then calls
the function nclaunch. Because the function call omits the 'hdlsimdir'
and 'startupfile' properties, nclaunch creates a temporary file. The
'tclstart' property specifies a Tcl command that loads the VHDL entity
parse in library work for cosimulation between nclaunch and Simulink. The
'socketsimulink' property specifies TCP/IP socket communication on the
same computer, using socket port 4449.

cd VHDLproj

nclaunch('tclstart', 'hdlsimulink work.parse', 'socketsimulink', '4449')

Another option is to bring ncsim up in the terminal instead of launching the
Simvision GUI, thereby allowing you to interact with the simulation. This
next example lists the steps necessary for you to do this:

1 Start hdldaemon in MATLAB.

2 Start an xterm from MATLAB in the background (key point).

3 Run ncsim in the xterm shell having it call back to the hdlserver to run
your matlabcp function as usual.

4 Have the matlabcp function touch a file to signal completion while an
MATLAB script polls for completion.

1-12

Using EDA Simulator Link with HDL Simulators

The MATLAB script can then change test parameters and run more tests.

Note The nclaunch command requires the use of property name/property
value pairs. You get an error if you try to use the function without them.

Starting the Discovery Simulator from MATLAB
To start the HDL simulator from MATLAB, enter launchDiscovery at the
MATLAB command prompt:

>> launchDiscovery('PropertyName', 'PropertyValue'...)

This example compiles and launches a single-file HDL design for cosimulation
with Simulink. The code allows the use of Verilog-2000 syntax in the HDL
source. This code launches the Synopsys DVE software.

>> launchDiscovery(...
'LinkType', 'Simulink', ...
'VerilogFiles', 'myinverter.v', ...
'VlogAnFlags', '+v2k', ...
'TopLevel', 'myinverter', ...
'AccFile', 'myinverter.acc' ...

);

Note The launchDiscovery command requires the use of property
name/property value pairs. You get an error if you try to use the function
without them.

Starting the HDL Simulator from a Shell

• “Starting the ModelSim Software from a Shell” on page 1-14

• “Starting the Cadence Incisive HDL Simulator from a Shell” on page 1-15

• “Starting the Discovery Software from a Shell” on page 1-16

1-13

1 Introduction

Starting the ModelSim Software from a Shell
To start the HDL simulator from a shell and include the EDA Simulator Link
libraries, you need to first run the configuration script. See “Diagnosing and
Customizing Your Setup for Use with the HDL Simulator and EDA Simulator
Link Software”.

After you have the configuration files, you can start the ModelSim software
from the shell by typing:

% vsim design_name -f matlabconfigfile

matlabconfigfile should be the name of the MATLAB configuration file you
created with syscheckmq (Linux/UNIX) or that you created yourself using our
template (Windows). If you are connecting to Simulink, this should be the
name of the Simulink configuration file. You must also specify the path to
the configuration file even if it resides in the same folder as vsim.exe. Use
design_name if you want to also start the simulation.

The configuration file mainly defines the -foreign option to vsim which in turn
loads the EDA Simulator Link shared library and specifies its entry point.

You can also specify any other existing configuration files you may also be
using with this call.

If you are performing this step manually, the following use of -foreign with
vsim loads the EDA Simulator Link client shared library and specifies its
entry point:

% vsim design_name -foreign matlabclient /path/library

where path is the path to this particular EDA Simulator Link library. See
“Using the EDA Simulator Link Libraries for HDL Cosimulation” on page
1-16 to find the correct library name for your machine. Use design_name if
you want to also start the simulation.

Note You can also issue this exact same command from inside the HDL
simulator.

1-14

Using EDA Simulator Link with HDL Simulators

Starting the Cadence Incisive HDL Simulator from a Shell
To start the HDL simulator from a shell and include the EDA Simulator
Link libraries, you need to first run the configuration script. See “Using the
Configuration and Diagnostic Script for UNIX/Linux”.

After you have the configuration files, you can start the HDL simulator from
the shell by typing:

% ncsim -f matlabconfigfile modelname

matlabconfigfile should be the name of the MATLAB configuration file you
created with syscheckin. If you are connecting to Simulink, this should be
the name of the Simulink configuration file. For example:

% ncsim -gui -f simulinkconfigfile modelname

Either way, you must also specify the path to the configuration file if it does
not reside in the same folder as ncsim.exe.

You can also specify any other existing configuration files you may also be
using with this call.

Starting ncsim in an xterm Terminal. If you would like to bring up ncsim
in an xterm terminal, instead of launching the Simvision GUI, perform the
following steps:

1 Start hdldaemon in MATLAB.

2 Start an xterm from MATLAB in the background.

3 Run ncsim in the xterm shell, having it call back to the hdlserver to run
your matlabtb function as usual.

4 Specify that the matlabtb function use the touch command on a file to
signal completion while a MATLAB script polls for completion.

The MATLAB script can then change test parameters and run more tests.

1-15

1 Introduction

Starting the Discovery Software from a Shell
You can run the scripts generated with a call to launchDiscovery (or scripts
you’ve created yourself) to start the Incisive software and load the link
libraries outside of MATLAB. See launchDiscovery for more information
and an example.

Using the EDA Simulator Link Libraries for HDL
Cosimulation
In general, you want to use the same compiler for all libraries linked into
the same executable. The link software provides many versions of the same
library compilers that are available with the HDL simulators (usually some
version of GCC). Using the same libraries ensures compatibility with other
C++ libraries that may get linked into the HDL simulator, including SystemC
libraries.

If you have any of these conditions, choose the version of the EDA Simulator
Link library that matches the compiler used for that code:

• Link other third-party applications into your HDL simulator.

• Compile and link in SystemC code as part of your design or testbench.

• Write custom C/C++ applications and link them into your HDL simulator.

If you do not link any other code into your HDL simulator, you can use any
version of the supplied libraries (Discovery users should use any supplied
library matching the installed version of GCC —gcc422— from the 2008.12
or 2009.6 VG_GNU_PACKAGE). The EDA Simulator Link launch command
(nclaunch, vsim, or launchDiscovery) chooses a default version of this
library.

For examples on specifying EDA Simulator Link libraries when cosimulating
across a network, see “Performing Cross-Network Cosimulation”.

Library Names
The EDA Simulator Link HDL libraries use the following naming format:

edalink/extensions/version/arch/lib{version_short_name}{client_server_tag}

_{design_language}_{compiler_tag).{libext}

1-16

Using EDA Simulator Link with HDL Simulators

where

Argument Incisive Users ModelSim
Users

Discovery
Users

version incisive modelsim discovery

arch linux32 or
linux64

linux32,linux64,
or windows32

linux32 or
linux64

version_short_name lfihdl lfmhdl lfdhdl

client_server_tag c (MATLAB) or
s (Simulink)

c (MATLAB) or
s (Simulink)

c
(MATLAB)
or s
(Simulink)

design_language
(Discovery only)

N/A N/A mixed =
pure vhdl
or mixed
vhdl/vlog

vlog = pure
vlog

compiler_tag gcc41, tmwgcc gcc412, tmwgcc gcc422

libext so dll or so so

Not all combinations are supported. See “Default Libraries” on page 1-17
for valid combinations.

For more on MATLAB build compilers, see MATLAB Build Compilers.

Default Libraries
EDA Simulator Link scripts fully support the use of default libraries.

The following table lists all the libraries shipped with the link software for
each supported HDL simulator. The default libraries for each platform are
in bold text.

1-17

http://www.mathworks.com/support/compilers/current_release/mlcompilers.html

1 Introduction

Default Libraries for use with ModelSim

Platform MATLAB Library Simulink Library

Linux32,
Linux64

liblfmhdlc_tmwgcc.so
liblfmhdlc_gcc412.so

liblfmhdls_tmwgcc.so
liblfmhdls_gcc412.so

Windows32 liblfmhdlc_tmwgcc.dll liblfmhdls_tmwgcc.dll

Note ModelSim uses gcc412 by default; EDA Simulator Link uses tmwgcc by
default. Therefore, if you are compiling HDL code in ModelSim make sure you
are compiling with the same library that EDA Simulator Link is using; either
tmwgcc by default or gcc412 if you so specified with the vsim command.

Default Libraries for use with Incisive

Platform MATLAB Library Simulink Library

Linux32,
Linux64

liblfihdlc_gcc41.so

liblfihdlc_tmwgcc.so

liblfihdls_gcc41.so

liblfihdsl_tmwgcc.so

Default Libraries for use with Discovery

Platform MATLAB Library Simulink Library

Linux32,
Linux64

liblfdhdlc_vlog_gcc422.so

liblfdhdlc_mixed_gcc422.so

liblfdhdls__vlog_gcc422.so

liblfdhdls__mixed_gcc422.so

Using an Alternative Library
The EDA Simulator Link launch commands contain parameters for specifying
the HDL-side library.

• “Incisive Users: Using an Alternative Library” on page 1-19

• “ModelSim Users: Using an Alternative Library” on page 1-21

• “Discovery Users: Using an Alternate Library” on page 1-23

1-18

Using EDA Simulator Link with HDL Simulators

Incisive Users: Using an Alternative Library. You can use a different
HDL-side library by specifying it explicitly using the libfile parameter to the
nclaunch MATLAB command. You should choose the version of the library
that matches the compiler and system libraries you are using for any other
C/C++ libraries linked into the HDL simulator. Depending on the version of
your HDL simulator, you may need to explicitly set additional paths in the
LD_LIBRARY_PATH environment variable.

For example, if you want to use a nondefault library:

1 Copy the system libraries from the MATLAB installation (found in
matlabroot/sys/os/platform) to the machine with the HDL simulator
(where matlabroot is your MATLAB installation and platform is one of the
above architecture, for example, linux32).

2 Modify the LD_LIBRARY_PATH environment variable to add the path to
the system libraries that were copied in step 1.

Example: EDA Simulator Link Alternate Library Using nclaunch

In this example, you are using the 32-bit Linux version of IUS 08.20-p001
on the same 64-bit Linux machine that is running MATLAB. Because you
have your own C++ application, and you are linking into ncsim that you used
twmgcc to compile, you are using the EDA Simulator Link version compiled
with tmwgcc, instead of using the default library version compiled with GCC
4.1.

In MATLAB:

>> currPath = getenv('PATH');

>> currLdPath = getenv('LD_LIBRARY_PATH');

>> setenv('PATH', ['/tools/IUS-82/bin:' currPath]);

>> nclaunch('tclstart', { 'exec ncvhdl inverter.vhd', ...

'exec ncelab -access +rwc inverter', ...

'hdlsimulink -gui inverter' }, ...

'libfile', liblfihdls_tmwgcc');

The PATH is changed to ensure we get the correct version of the HDL
simulator tools. Note that the nclaunch MATLAB command will
automatically detect the use of the 32-bit version of the HDL simulator and

1-19

1 Introduction

use the linux32 library folder in the EDA Simulator Link installation; there is
no need to specify the libdir parameter in this case.

The library resolution can be verified using ldd from within the ncsim console
GUI.

ncsim> exec ldd /path/to/liblfihdls_tmwgcc.so
linux-gate.so.1 => (0xf7f4f000)
libpthread.so.0 => /lib32/libpthread.so.0 (0xf7ed9000)
libstdc++.so.6 => /usr/lib32/libstdc++.so.6 (0xf7deb000)
libm.so.6 => /lib32/libm.so.6 (0xf7dc7000)
libgcc_s.so.1 => /usr/lib32/libgcc_s.so.1 (0xf7dba000)
libc.so.6 => /lib32/libc.so.6 (0xf7c67000)
/lib/ld-linux.so.2 (0xf7f50000)

Example: EDA Simulator Link Alternate Library Using System Shell

This example shows how to load a Cadence Incisive simulator session by
explicitly specifying the EDA Simulator Link library (default or not). By
explicitly using a system shell, you can execute this example on the same
machine as MATLAB, on a different machine, and even on a machine with a
different operating system.

In this example, you are running the 64-bit Linux version of Cadence Incisive
5.83p2; it does not matter what machine MATLAB is running on. Instead of
using the default library version compiled with GCC 3.2.3 in the Cadence
Incisive distribution, you are using the version compiled with GCC 3.4.6 in
the Cadence Incisive distribution.

In a csh-compatible system shell:

csh> setenv PATH /tools/ius-583p2/lnx/tools/bin/64bit:${PATH}

csh> setenv LD_LIBRARY_PATH /tools/ius-583p2/lnx/tools/systemc/gcc/3.4.6-x86_64

/install/lib64:${LD_LIBRARY_PATH}

csh> ncvhdl inverter.vhd

csh> ncelab -access +rwc inverter

csh> ncsim -tcl -loadvpi /tools/matlab-7b/toolbox/edalink/extensions/incisive/linux64

/liblfihdlc_gcc346:matlabclient inverter.vhd

1-20

Using EDA Simulator Link with HDL Simulators

The PATH is changed to ensure we get the correct version of the Cadence
Incisive tools. Although ncsim will automatically find any GCC libs in its
installations, the LD_LIBRARY_PATH is changed to show how you might do
this with a custom installation of GCC.

You can check the proper library resolution using ldd as in the previous
example.

ModelSim Users: Using an Alternative Library. You can use a different
HDL-side library by specifying it explicitly using the libfile parameter to
the vsim MATLAB command. You should choose the version of the library
that matches the compiler and system libraries you are using for any other
C/C++ libraries linked into the HDL simulator. Depending on the version of
your HDL simulator, you may need to explicitly set additional paths in the
LD_LIBRARY_PATH environment variable.

For example, if you want to use a nondefault library:

1 Copy the system libraries from the MATLAB installation (found in
matlabroot/sys/os/platform) to the machine with the HDL simulator
(where matlabroot is your MATLAB installation and platform is one of the
above architecture, for example, linux32).

2 Modify the LD_LIBRARY_PATH environment variable to add the path to
the system libraries that were copied in step 1.

Example: EDA Simulator Link Alternative Library Using vsim

In this example, you run the 32-bit Linux version of ModelSim 6 software on
the same 64-bit Linux machine which is running MATLAB. Because you want
to incorporate some SystemC designs, you are using theEDA Simulator Link
version compiled with GCC 4.1.2. You can download the appropriate version
of GCC with its associated system libraries from Mentor Graphics, instead of
using the default library version compiled with tmwgcc.

In MATLAB:

>> currPath = getenv('PATH');

>> currLdPath = getenv('LD_LIBRARY_PATH');

>> setenv('PATH', ['/tools/modelsim-6.5c/bin:' currPath]);

1-21

1 Introduction

>> setenv('LD_LIBRARY_PATH', ['/tools/modelsim-6.5c/gcc-4.1.2-linux/lib:' currLdPath]);

>> setenv('MTI_VCO_MODE', '32');

>> vsim('tclstart', { 'vlib work', 'vcom inverter.vhd', 'vsimulink inverter' }, ...

'libfile', ' liblfmhdls_gcc412);

You change the PATH to ensure that you get the correct version of the
ModelSim software. You change the LD_LIBRARY_PATH because the HDL
simulator does not automatically add the necessary path to the system
libraries. The EDA Simulator Link function vsim automatically detects the
use of the 32-bit version of the HDL simulator and uses the linux32 library
folder in the link software installation; there is no need to specify the libdir
parameter in this case.

The library resolution can be verified using ldd from within the ModelSim
GUI:

exec ldd /path/to/liblfmhdls_gcc412.so

linux-gate.so.1 => (0xf7efc000)

libpthread.so.0 => /lib32/libpthread.so.0 (0xf7e8a000)

libstdc++.so.6 => /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.5c-tmw-000/

modeltech/gcc-4.1.2-linux/lib/libstdc++.so.6 (0xf7d9c000)

libm.so.6 => /lib32/libm.so.6 (0xf7d78000)

libgcc_s.so.1 => /mathworks/hub/share/apps/HDLTools/ModelSim/modelsim-6.5c-tmw-000/

modeltech/gcc-4.1.2-linux/lib/libgcc_s.so.1 (0xf7d6d000)

libc.so.6 => /lib32/libc.so.6 (0xf7c1b000)

/lib/ld-linux.so.2 (0xf7efd000)

Example: EDA Simulator Link Alternate Library Using System Shell

This example shows how to load a ModelSim session by explicitly specifying
the EDA Simulator Link library (either the default or one of the alternatives).
By explicitly using a system shell, you can execute this example on the same
machine as MATLAB, on a different machine, and even on a machine with a
different operating system.

In this example, you are running the 64-bit Linux version of QuestaSim 6.2c.
It does not matter which machine is running MATLAB. Instead of using the
EDA Simulator Link default library version compiled with tmwgcc, you are
using the version compiled with GCC 4.1.2. You can download the appropriate
version of GCC with its associated system libraries from Mentor Graphics.

1-22

Using EDA Simulator Link with HDL Simulators

In this example, you are running the 64-bit Linux version of QuestaSim 6.5c.
MATLAB can be running on Windows or on any other supported platform.
Instead of using the EDA Simulator Link default library version compiled
with tmwgcc, you are using the version compiled with GCC 4.1.2. You can
download the appropriate version of GCC with its associated system libraries
from Mentor Graphics.

In a csh-compatible system shell:

csh> setenv PATH /tools/questasim/bin:${PATH}

csh> setenv LD_LIBRARY_PATH /tools/mtigcc/gcc-4.1.2-linux_x86_64/lib64:${LD_LIBRARY_PATH}

csh> setenv MTI_VCO_MODE 64

csh> vlib work

csh> vcom +acc+inverter inverter.vhd

csh> vsim +acc+inverter -foreign "matlabclient /tools/matlab/toolbox/edalink

/extensions/modelsim/linux64/liblfmhdlc_gcc412.so" work.inverter

You change the PATH to ensure that you get the correct version of the
ModelSim software. You change the LD_LIBRARY_PATH because the HDL
simulator does not automatically add the necessary path to the system
libraries unless you are working with 6.2+ and have placed GCC at the root of
the ModelSim installation.

You can check the proper library resolution using ldd as in the previous
example.

Discovery Users: Using an Alternate Library. The only library supported
for Discovery by EDA Simulator Link is gcc422 from the 2008.12 or 2009.6
VG_GNU_PACKAGE.

1-23

1 Introduction

Using EDA Simulator Link with Virtual Platforms

In this section...

“Typical Users and Applications” on page 1-24

“Generating TLM Components for Use with Virtual Platform Development”
on page 1-24

Typical Users and Applications
Using EDA Simulator Link and Simulink, you can create a TLM-2.0-compliant
SystemC Transaction Level Model (TLM) that can be executed in any
OSCI-compatible TLM 2.0 environment, including a commercial virtual
platform.

Typical users and applications include:

• System-level engineers designing electronic system models that include
architectural characteristics

• Software developers who want to incorporate an algorithm into a virtual
platform without using an instruction set simulator (ISS).

• Hardware functional verification engineers. In this case, the algorithm
represents a piece of hardware going into a chip.

Generating TLM Components for Use with Virtual
Platform Development
When used with virtual platforms, EDA Simulator Link joins two different
modeling environments: Simulink for high-level algorithm development and
virtual platforms for system architectural modeling. The Simulink modeling
typically dispenses with implementation details of the hardware system such
as processor and operating system, system initialization, memory subsystems,
device configuration and control, and the particular hardware protocols for
transferring data both internally and externally.

The virtual platform is a simulation environment that is concerned about the
hardware details: it has components that map to hardware devices such as

1-24

Using EDA Simulator Link with Virtual Platforms

processors, memories, and peripherals, and a means to model the hardware
interconnect between them.

Although many goals could be met with a virtual platform model, the ideal
scenario for virtual platforms is to allow for software development—both high
level application software and low-level device driver software—by having
fairly abstract models for the hardware interconnect that allow the virtual
platform to run at near real-time speeds, as demonstrated in the following
diagram.

The functional model provides a sort of halfway point between the speed you
can achieve with abstraction and the accuracy you get with implementation.

1-25

1 Introduction

Using EDA Simulator Link with FPGA Development
Environment

In this section...

“Simulation with Simulink and the FPGA Development Environment” on
page 1-26

“Generated FPGA Project Cosimulation Workflows Described in the User
Guide” on page 1-27

Simulation with Simulink and the FPGA Development
Environment
EDA Simulator Link provides a Project Generator for generating HDL code
from Simulink models for FPGA implementations and packaging these files as
a complete FPGA development environment project for use with Xilinx ISE.

The Project Generator component provides streamlined workflow with
advanced options for project settings in the Xilinx ISE downstream workflow
for FPGA implementations. The project generator uses Simulink HDL Coder
to generate code to create generated FPGA implementations. With the
interface, you can do the following:

• Take code generation process one step further and package up the
generated code so you can use it with Xilinx tools (most of project info
provided by EDA Simulator Link for project creation).

• Make changes to project info: automatically update generated code, add
Simulink files to existing project, automatically manage generated files
in associated project.

• Get settings from existing project and save these settings with the model.

• Request automatic generation of a Xilinx digital clock manager (DCM) for
HDL code generated by Simulink HDL Coder for implementation in FPGA
devices.

In FPGA project generation, EDA Simulator Link uses the Simulink model
and Simulink HDL Coder to generate HDL code and generate a Xilinx
FPGA project, which can then be loaded in the Xilinx FPGA development

1-26

Using EDA Simulator Link with FPGA Development Environment

environment for downstream processing. This process is shown in the
following diagram.

The additional FPGA hardware-in-the-loop (HIL) testing environment
uses code automatically generated from Simulink models by Simulink
HDL Coder software. This generated code and customized code for FPGA
HIL communication are used to generated an FPGA project, run through
downstream processing. The resulting programming file can be downloaded to
the FPGA device for verification. See the EDA Simulator Link product page
for a list of currently supported devices.

Generated FPGA Project Cosimulation Workflows
Described in the User Guide
The EDA Simulator Link User Guide provides instruction for using the link
software with supported FPGA development environments for the following
workflows:

• Creating a new FPGA project

• Adding generated files to an existing FPGA project

• Updating generated files in associated FPGA project

• Removing FPGA project associations

• Generating Tcl scripts for project generation

• Performing FPGA hardware-in-the-loop (HIL) simulation

1-27

http://www.mathworks.com/products/eda-simulator/requirements.html

1 Introduction

1-28

2

Installing the EDA
Simulator Link Software

• “Product Requirements” on page 2-2

• “Installation” on page 2-6

2 Installing the EDA Simulator Link™ Software

Product Requirements

In this section...

“What You Need to Know” on page 2-2

“Required Products” on page 2-3

What You Need to Know
The documentation provided with the EDA Simulator Link software assumes
users have a moderate level of prerequisite knowledge in the following subject
areas:

• For HDL Cosimulation:

- Hardware design and system integration

- VHDL and/or Verilog

- Cadence Incisive®, Mentor Graphics® ModelSim®, or Synopsys®

Discovery™ simulators

- MATLAB

- Experience with Simulink and Simulink® Fixed Point™ software is
required for applying the Simulink component of the product.

• For generated FPGA implementation

- FPGA design and implementation

- VHDL and/or Verilog

- Xilinx ISE

- Simulink and Simulink HDL Coder software

• For use with virtual platforms:

- Simulink

- Real-Time Workshop® Embedded Coder™ (some knowledge helpful)

- TLM 2.0

- System C (compiling, linking, and executing)

2-2

Product Requirements

Depending on your application, experience with the following MATLAB
toolboxes and Simulink blocksets might also be useful:

• Signal Processing Toolbox™

• Filter Design Toolbox™

• Communications Toolbox™

• Signal Processing Blockset™

• Communications Blockset™

• Video and Image Processing Blockset™

• Simulink Fixed Point

• Embedded MATLAB®

Required Products

• “Platform and Application Software Requirements” on page 2-3

• “Optional Application Software” on page 2-4

Platform and Application Software Requirements
Visit the EDA Simulator Link requirements page on The MathWorks Web
site for specific platforms supported and detailed information about the
software and hardware required to use EDA Simulator Link software with
the current release.

Platform-Specific Software Requirements for HDL Cosimulation.

• For Use with Cadence Incisive

The EDA Simulator Link shared libraries (liblfihdls*.so,
liblfihdlc*.so) are built using the gcc included in the Cadence Incisive
simulator platform distribution. If you are linking your own applications
into the HDL simulator, the recommendation is that you also build against
this gcc. See the HDL simulator documentation for more details about how
to build and link your own applications.

• For Use with Mentor Graphics ModelSim

2-3

http://www.mathworks.com/products/eda-simulator/requirements.html

2 Installing the EDA Simulator Link™ Software

On the Linux platform, the gcc c++ libraries (4.1 or later) are required by
the EDA Simulator Link software. You should install a recent version of
the gcc c++ library on your computer. To determine which libraries are
installed on your computer, type the command:

gcc -v

• For Use with Synopsys Discovery

The EDA Simulator Link shared libraries (liblfdhdls*.so,
liblfdhdlc*.so) are built using the gcc422 GCC included in the Synopsys
2008.12 and 2009.6 VG_GNU_PACKAGE distribution. To ensure
compatibility with our product you must use this GCC to compile your HDL.

Platform-Specific Software Requirements for TLM Component
Generation. Content TBD

Platform-Specific Software Requirements for FPGA Implementations.
Content TBD

Optional Application Software
You might want to consider adding the following MathWorks products to your
EDA Simulator Link setup for the most robust development environment
for your application.

For HDL Cosimulation.

• Communications Blockset

• Signal Processing Blockset

• Filter Design Toolbox

• Signal Processing Toolbox

• Video and Image Processing Blockset

For Generating OSCI-Compatible TLM Components.

• Simulink Fixed Point

2-4

Product Requirements

• Embedded MATLAB

2-5

2 Installing the EDA Simulator Link™ Software

Installation

In this section...

“Installing the Link Software” on page 2-6

“Installing Related Application Software” on page 2-6

Installing the Link Software
For details on how to install the EDA Simulator Link software, see the
MATLAB installation instructions.

Installing Related Application Software
Based on your configuration decisions and the software required for your EDA
Simulator Link application, identify software you need to install and where
you need to install it. For example, if you need to run multiple instances of
the link MATLAB server on different machines, you need to install MATLAB
and any applicable toolbox software on multiple systems. Each instance of
MATLAB can run only one instance of the server.

For details on how to install the HDL simulator, see the installation
instructions for that product. For information on installing and activating
MathWorks products, see the MATLAB installation and activation
instructions.

GCCs for Synopsys Discovery

In addition to making sure Discovery is installed and on the path, you must
also download and install the one supported GCC in the Synopsys 2008.12 or
2009.6 VG_GNU_PACKAGE release: gcc422. See “Using the EDA Simulator
Link Libraries for HDL Cosimulation” on page 1-16.

2-6

3

Learning More About
the EDA Simulator Link
Software

• “Documentation Overview” on page 3-2

• “Online Help” on page 3-6

• “Demos and Tutorials” on page 3-7

3 Learning More About the EDA Simulator Link™ Software

Documentation Overview

In this section...

“Documentation for HDL Cosimulation” on page 3-2

“Documentation for Generating TLM Components” on page 3-3

“Documentation for Generated FPGA Implementations” on page 3-4

“Documentation for Use with All EDA Simulator Link Adaptors” on page 3-5

Documentation for HDL Cosimulation

Getting Started Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Directs you
to product demos and tutorials.

“Simulating an HDL
Component in a MATLAB
Test Bench Environment”

Explains how to code HDL models and
MATLAB test bench functions for EDA
Simulator Link MATLAB applications.
Provides details on how the link interface
maps HDL data types to MATLAB data
types and vice versa. Explains how to start
and control HDL simulator and MATLAB
test bench sessions.

“Replacing an HDL
Component with a MATLAB
Component Function”

Discusses the same topics as the chapter
for test bench cosimulation using MATLAB
software but instead using MATLAB to
visualize an HDL module component.

“Simulating an HDL
Component in a Simulink
Test Bench Environment”

Explains how to use the HDL simulator and
Simulink for cosimulation modeling where
Simulink acts as the test bench

“Replacing an HDL
Component with a Simulink
Algorithm”

Explains how to use the HDL simulator and
Simulink for cosimulation modeling where
Simulink replaces an HDL component

3-2

Documentation Overview

“Recording Simulink
Signal State Transitions
for Post-Processing”

Provides instruction for adding a Value
Change Dump (VCD) file block to your
Simulink model for signal state change
capture.

“Additional Deployment
Options”

Contains several procedures for additional
cosimulation arrangements: for example,
performing cross-network cosimulation.

“Advanced Operational
Topics”

Contains a variety of topics that provide a
deeper understanding of how cosimulation
works.

“Blocks — Alphabetical List” Describes EDA Simulator Link blocks for
use with Simulink.

“Functions — Alphabetical
List”

Describes EDA Simulator Link functions
for use with MATLAB.

Documentation for Generating TLM Components

Getting Started Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Directs you
to product demos and tutorials.

“Overview to TLM
Component Generation”

Provides workflow and instructions for
generating a SystemC TLM 2.0 component.

“Selecting Features for the
Generated TLM Component”

Describes the options available for the
generated TLM component and how
to select them using the Configuration
Parameters dialog box.

“Creating and Applying a
Test Bench for the Generated
TLM Component”

Provides workflow and instructions for
creating a testbench for the TLM component
generated with EDA Simulator Link

3-3

3 Learning More About the EDA Simulator Link™ Software

“Using TLM Components in a
SystemC Environment”

Describes the process necessary to provide
compiler options for the generated TLM
component and then execute component
(and testbench) in SystemC environment.

“Configuration Parameters
for TLM Generator Target”

Reference section for TLM generation
Configuration Parameters.

Documentation for Generated FPGA Implementations

Getting Started Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Directs you
to product demos and tutorials.

“FPGA Project Generation
Overview”

Provides an overview on the benefits and
features of creating an FPGA Project using
EDA Simulator Link.

“FPGA Project Development” Provides instructions for the following:
• Creating generated code from a Simulink
model and creating a new FPGA project
to associate the generated code with

• Associating generated code from
Simulink model with an existing FPGA
project

• Updating generated code associated with
an FPGA project from existing Simulink
model

• Removing the association between
generated code from a Simulink model
and an FPGA project

• Generating a full or partial Tcl script for
later project generation

3-4

Documentation Overview

“FPGAHardware-in-the-Loop
(HIL)”

Describes implementing the FPGA
Harware-in-the-Loop feature when using
EDA Simulator Link for FPGA project
generation.

Documentation for Use with All EDA Simulator Link
Adaptors

Getting Started Explains what the product is, the steps
for installing and setting it up, how you
might apply it to the hardware design
process, and how to gain access to product
documentation and online help. Directs you
to product demos and tutorials.

“Functions — Alphabetical
List”

Describes EDA Simulator Link functions
for use with MATLAB.

3-5

3 Learning More About the EDA Simulator Link™ Software

Online Help

In this section...

“Online Help in the MATLAB Help Browser” on page 3-6

“Help for EDA Simulator Link MATLAB Functions” on page 3-6

“Block Reference Pages” on page 3-6

Online Help in the MATLAB Help Browser
Click the EDA Simulator Link product link in the browser’s Contents or
access using the MATLAB doc command at the MATLAB command prompt:

doc hdldaemon

at the MATLAB command prompt.

Help for EDA Simulator Link MATLAB Functions
Function help is available by either of the following methods:

• By issuing the MATLAB help command. For example, enter the following
command:

help hdldaemon

to get the MATLAB help for the hdldaemon function.

• By clicking the icon in the MATLAB command window.

Block Reference Pages
Block reference pages are accessible through the Simulink interface. You can
also access these block reference pages by clicking Help on any block dialog.

3-6

Demos and Tutorials

Demos and Tutorials

In this section...

“Demos” on page 3-7

“Tutorials” on page 3-7

Demos
The demos give you a quick view of the product’s capabilities and examples
of how you might apply the product. You can run them with limited product
exposure. You can find the EDA Simulator Link demos with the online
documentation. To access demos, type at the MATLAB command prompt:

>> demos

Select Links and Targets > EDA Simulator Link from the navigational
pane.

Tutorials
Tutorials provide procedural instruction on how to apply the product. Some
focus on features while others focus on application scenarios. The tutorials
listed here have a feature focus and addresses the use of the EDA Simulator
Link software with the ModelSim and Simulink products.

• “Tutorial – Running a Sample ModelSim and MATLAB Test Bench Session”

• “Tutorial — Verifying an HDL Model Using Simulink, the HDL Simulator,
and the EDA Simulator Link Software”

• “To VCD File Block Tutorial”

3-7

3 Learning More About the EDA Simulator Link™ Software

3-8

Index

IndexA
application software 2-3
application specific integrated circuits

(ASICs) 1-1
applications 1-2
ASICs (application specific integrated

circuits) 1-1

B
behavioral model 1-2
blocksets

installing 2-6

C
client

for MATLAB and HDL simulator links 1-3
for Simulink and HDL simulator links 1-3

client/server environment
MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

communication
modes of 1-8

Communications Blockset
as optional software 2-3

configuration file
using with Cadence Incisive

simulatorsncsim 1-15
using with ModelSim vsim 1-14

cosimulation environment
MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

D
demos 3-7

for EDA Simulator Link™ 3-1
for use with FPGA implementations 3-1

design process, hardware 1-2

Discovery
in EDA Simulator Link™ cosimulation

environment 1-3
working with MATLAB links to 1-3

documentation
overview 3-1

for use with FPGA implementations 3-1

E
EDA (Electronic Design Automation) 1-1
EDA Simulator Link™

default libraries 1-16
EDA Simulator Link™ libraries

using 1-16
EDA Simulator Link™ software

definition of 1-1
installing 2-6

Electronic Design Automation (EDA) 1-1
environment

cosimulation with MATLAB and HDL
simulator 1-3

cosimulation with Simulink and HDL
simulator 1-3

F
field programmable gate arrays (FPGAs) 1-1
-foreign option

with ModelSim vsim 1-14
FPGAs (field programmable gate arrays) 1-1

H
hardware description language (HDL). See HDL
hardware design process 1-2
HDL (hardware description language) 1-1
HDL Cosimulation block

in EDA Simulator Link™ environment 1-3
HDL models 1-2

cosimulation 1-2

Index-1

Index

verifying 1-2
See also VHDL models

HDL simulator
starting 1-13

HDL simulators
in EDA Simulator Link™ environment 1-3
installing 2-6
invoking for use with EDA Simulator Link™

software 1-9
launch command 1-9
specifying a specific executable or version 1-9
working with Simulink links to 1-3

help
for EDA Simulator Link™ software 3-1

for use with FPGA implementations 3-1

I
Incisive

in EDA Simulator Link™ cosimulation
environment 1-3

working with MATLAB links to 1-3
Incisive or NC simulators

as required software 2-3
installation

of EDA Simulator Link™ software 2-6
of related software 2-6

L
launchDiscovery

using 1-9
using to start Incisive software from a

shell 1-16
links

MATLAB and HDL simulator 1-3
Simulink and HDL simulator 1-3

M
MATLAB

as required software 2-3
in EDA Simulator Link™ cosimulation

environment 1-3
installing 2-6
working with HDL simulator links to 1-3

MATLAB functions
test bench 1-3

MATLAB server
function for invoking 1-3

ModelSim
in EDA Simulator Link™ cosimulation

environment 1-3
working with MATLAB links to 1-3

ModelSim simulators
as required software 2-3

N
nclaunch

using 1-9
ncsim

for the Cadence Incisive simulators
using configuration file with 1-15

O
online help

where to find it 3-1
for use with FPGA implementations 3-1

OS platform. See EDA Simulator Link™ product
requirements page on The MathWorks web
site

P
platform support

required 2-3
prerequisites

for using EDA Simulator Link™ software 2-2

Index-2

Index

R
requirements

application software 2-3
checking product 2-3
platform 2-3

S
server, MATLAB

for MATLAB and HDL simulator links 1-3
for Simulink and HDL simulator links 1-3

shared memory communication 1-8
Signal Processing Blockset

as optional software 2-3
Simulink

as optional software 2-3
in EDA Simulator Link™ environment 1-3
installing 2-6
working with HDL simulator links to 1-3

Simulink Fixed Point
as optional software 2-3

sockets 1-8
See also TCP/IP socket communication

software
installing EDA Simulator Link™ 2-6
installing related application software 2-6
optional 2-3
required 2-3

Synopsys Discovery simulators

as required software 2-3

T
TCP/IP networking protocol 1-8

See also TCP/IP socket communication
TCP/IP socket communication

mode 1-8
To VCD File block

uses of 1-3
tutorials 3-7

for EDA Simulator Link™ 3-1
for use with FPGA implementations 3-1

U
users

for EDA Simulator Link™ software 2-2

V
VHDL models 1-2

See also HDL models
vsim

for ModelSim
using configuration file with 1-14

using 1-9
using -foreign option 1-14

Index-3

	toc
	Introduction
	Product Overview
	Product Description
	HDL Cosimulation
	TLM Generation
	FPGA Development

	Using EDA Simulator Link with HDL Simulators
	Overview to Cosimulation with MATLAB or Simulink and the HDL Sim
	Linking with MATLAB and the HDL Simulator
	Linking with Simulink and the HDL Simulator
	Communications for HDL Cosimulation
	Hardware Description Language (HDL) Support
	HDL Cosimulation Workflows Described in the User Guide

	Starting the HDL Simulator from MATLAB
	Starting the ModelSim Simulator from MATLAB
	Starting the Cadence Incisive Simulator from MATLAB
	Starting the Discovery Simulator from MATLAB

	Starting the HDL Simulator from a Shell
	Starting the ModelSim Software from a Shell
	Starting the Cadence Incisive HDL Simulator from a Shell
	Starting the Discovery Software from a Shell

	Using the EDA Simulator Link Libraries for HDL Cosimulation
	Library Names
	Default Libraries
	Default Libraries for use with ModelSim
	Default Libraries for use with Incisive
	Default Libraries for use with Discovery
	Using an Alternative Library
	Example: EDA Simulator Link Alternate Library Using nclaunch
	Example: EDA Simulator Link Alternate Library Using System Shell
	Example: EDA Simulator Link Alternative Library Using vsim
	Example: EDA Simulator Link Alternate Library Using System Shell

	Using EDA Simulator Link with Virtual Platforms
	Typical Users and Applications
	Generating TLM Components for Use with Virtual Platform Developm

	Using EDA Simulator Link with FPGA Development Environment
	Simulation with Simulink and the FPGA Development Environment
	Generated FPGA Project Cosimulation Workflows Described in the U

	Installing the EDA Simulator Link Software
	Product Requirements
	What You Need to Know
	Required Products
	Platform and Application Software Requirements
	Optional Application Software

	Installation
	Installing the Link Software
	Installing Related Application Software
	GCCs for Synopsys Discovery

		Learning More About the EDA Simulator Link Software
	Documentation Overview
	Documentation for HDL Cosimulation
	Documentation for Generating TLM Components
	Documentation for Generated FPGA Implementations
	Documentation for Use with All EDA Simulator Link Adaptors

	Online Help
	Online Help in the MATLAB Help Browser
	Help for EDA Simulator Link MATLAB Functions
	Block Reference Pages

	Demos and Tutorials
	Demos
	Tutorials

	Index

